Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis.

نویسندگان

  • Rod W Wilson
  • Martin Grosell
چکیده

Whole animal studies using seawater European flounder (Platichthys flesus) revealed that increasing intestinal [Ca(2+)] to 20 mM stimulated net HCO(3)(-) base secretion by 57%, but this was effectively balanced by an increase in net acid secretion, likely from the gills, to maintain whole animal acid-base status. Higher Ca(2+) concentrations (40 and 70 mM) in ambient seawater resulted in reduced plasma total CO(2). This indicates (1) imperfect acid-base compensation, and (2) that endogenous metabolic CO(2) is insufficient to fuel intestinal HCO(3)(-) secretion, under hyper-stimulated conditions. Bicarbonate secretion plays an important role in preventing calcium absorption by precipitating a large fraction of the imbibed calcium as CaCO(3). Indeed, under high Ca(2+) conditions (20 mM), up to 75% of the intestinal Ca(2+) is precipitated as CaCO(3) and then excreted. This is undoubtedly important in protecting the marine teleost kidney from the need for excessive calcium excretion and risk of renal stone formation. Using an in vitro pH-stat technique with the isolated intestinal epithelium, the replacement of serosal CO(2) with a HEPES buffered saline had no effect on HCO(3)(-) secretion, indicating that the endogenous supply of HCO(3)(-) from CO(2) hydration within epithelial cells is adequate for driving baseline secretion rates. Further, in vitro data demonstrated a stimulatory effect of low pH on intestinal HCO(3)(-) secretion. Thus, both luminal Ca(2+) and H(+) can regulate HCO(3)(-) secretion but the precise mechanisms and their potential interaction are currently unresolved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intestinal bicarbonate secretion by marine teleost fish--why and how?

Intestinal fluids of most marine teleosts are alkaline (pH 8.4-9.0) and contain high levels of HCO(3)(-) equivalents (40-130 mM) which are excreted at a significant rate (>100 microEq kg(-1) h(-1)). Recent research reveals the following about this substantial HCO(3)(-) secretion: (1) It is not involved in acid-base regulation or neutralisation of stomach acid, but increases in parallel with dri...

متن کامل

Intelligence Impacts of Co 2 on Acid - Base Balance , Rectal Base Excretion and Intestinal

The processing of seawater by the marine teleost fi sh intestine includes high rates of base (bicarbonate) secretion into the intestinal fl uids. The resulting high bicarbonate concentrations in the intestinal fl uids combine with the calcium in the ingested seawater to form calcium carbonate crystals. This process is important for the salt and water balance of the marine teleost fi sh and lead...

متن کامل

Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.).

The pituitary hormone prolactin is a pleiotropic endocrine factor that plays a major role in the regulation of ion balance in fish, with demonstrated actions mainly in the gills and kidney. The role of prolactin in intestinal ion transport remains little studied. In marine fish, which have high drinking rates, epithelial bicarbonate secretion in the intestine produces luminal carbonate aggregat...

متن کامل

Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.

In marine fish, high epithelial intestinal HCO₃− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃− secretion in the intestine of the sea bream (Sparus aurata L.). Effects on t...

متن کامل

Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1618 2  شماره 

صفحات  -

تاریخ انتشار 2003